[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15190

B. Tech 5th Semester Examination Fluid Mechanics and Fluid Machines (NS) AU-311

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question from each of the sections A, B, C and D of the question paper and all the subparts of the question in Section-E. Use of non programmable calculator is allowed.

SECTION - A

- (a) Explain the importance of viscosity in fluid motion.
 Discuss the effect of temperature on viscosity of water and air.
 (10)
 - (b) Differentiate between Eulerian and Lagrangian method of representing fluid motion. (10)
- 2. Explain the following types of equillibrium of floating bodies
 - (i) stable equillibrium (ii) unstable equillibrium (20)

SECTION - B

3. The velocity potential for a two dimensional flow is

$$\phi = x(2y-1)$$

Determine the velocity at the point P(4,5). Also obtain the value of stream function at this point P. (20)

2 15190

4. Derive Euler's equation of motion along a stream line and hence derive the Bernoulli's equation. (20)

SECTION - C

- 5. What is meant by boundary layer separation? Describe with sketches the methods to control separation. (20)
- 6. A 2500m long pipeline is used for transmission of power 120 kW power is to be transmitted through the pipe in which water having a pressure of 4000 kN/m² at inlet is flowing. If the pressure drop over the length of pipe is 800 kN/m² and f=0.006, find:
 - (i) Diameter of the pipe and
 - (ii) Efficiency of transmission. (20)

SECTION - D

- 7. A centrifugal pump is required to deliver 50 ltr of water per second to a height of 30m through a 100 m long pipe of 15cm diameter. The inlet losses in suction pipe are estimated to be 0.35m. Assuming an overall efficiency of 70% and taking Darey's friction coefficient 0.015 for the pipe line, determine the power required to drive the pump. (20)
- (a) Give a brief account of providing air vessels on the suction and delivery sides of a reciprocating pump.
 (10)
 - (b) Enumerate the salient points of difference between centrifugal and reciprocating pump. (10)

[P.T.O.]

3	15190

SECTION - E

- 9. (a) Differentiate between real and ideal fluid.
 - (b) What is centre of buoyancy?
 - (c) Explain streak and path lines.
 - (d) What is the function of a venturimeter?
 - (e) What do you understand by boundary layer?
 - (f) What is meant by turbulent flow?
 - (g) Define hydraulic efficiency of a centrifugal pump.
 - (h) What is meant by cavitation?
 - (i) Define volumetric efficiency.
 - (j) Explain flow nets. (2×10=20)